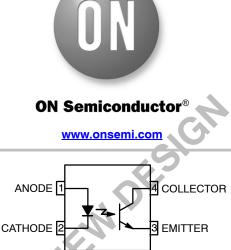
4-Pin Half-Pitch Mini-Flat Phototransistor Optocouplers

Description


The HMHA281 and HMHA2801 series devices consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a compact 4-pin mini-flat package. The lead pitch is 1.27 mm.

Features

- Compact 4–Pin Package
 - 2.4 mm Maximum Standoff Height
 - Half-Pitch Leads for Optimum Board Space Savings
- Current Transfer Ratio:
 - HMHA281: 50% to 600%
 - HMHA2801: 80% to 600%
 - ◆ HMHA2801A: 80% to 160%
 - HMHA2801B: 50% to 150%
 - HMHA2801C: 50% to 100%
- Safety and Regulatory Approvals:
 - ◆ UL1577, 3.750 VAC_{RMS} for 1 Minute
- DIN-EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Digital Logic Inputs
- Microprocessor Inputs
- Power Supply Monitor
- Twisted Pair Line Receiver
- Telephone Line Receiver

CASE 100AL

MARKING DIAGRAM

- ON = onsemi Logo
- 281 = Device Number
- V = DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
- = One-Digit Year Code, e.g., "5" х
- YΥ = Digit Work Week, Ranging from "01" to "53"
- = Assembly Package Code M1

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

Table 1. SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Parameter		Characteristics
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	1, For Rated Mains Voltage < 150 V _{RMS}	
	< 300 V _{RMS}	I–III
Climatic Classification		55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM}x$ 1.6 = $V_{PR},$ Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC	904	V _{peak}
	Input–to–Output Test Voltage, Method B, V_{IORM} x 1.875 = V_{PR} , 100% Production Test with t_m = 1 s, Partial Discharge < 5 pC	1060	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	565	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	4000	V _{peak}
	External Creepage	≥5	mm
	External Clearance	≥5	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥0.4	mm
Τ _S	Case Temperature (Note 1)	150	°C
I _{S, INPUT}	Input Current (Note 1)	200	mA
P _{S, OUTPUT}	Output Power (Note 1)	300	mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V (Note 1)	>10 ⁹	Ω

1. Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise specified)

Symbol	Parameter	Value	Unit
TAL PACKA	AGE		
T _{STG}	Storage Temperature	–55 to +125	°C
T _{OPR}	Operating Temperature	–55 to +100	°C
TJ	Junction Temperature	-40 to +125	°C
PD	Total Device Power Dissipation @ $T_A = 25^{\circ}C$	210	mW
	Derate Above 25°C	2.1	mW/°C

I _{F (avg)}	Continuous Forward Current	50	mA
I _{F (pk)}	Peak Forward Current (1 μ s pulse, 300 pps)	1	А
V _R	Reverse Input Voltage	6	V
PD	LED Power Dissipation @ $T_A = 25^{\circ}C$	60	mW
	Derate Above 25°C	0.6	mW/°C

DETECTOR

Ι _C	Continuous Collector Current	50	mA
V _{CEO}	Collector-Emitter Voltage	80	V
V _{ECO}	Emitter-Collector Voltage	7	V
PD	Detector Power Dissipation @ $T_A = 25^{\circ}C$	150	mW
	Derate Above 25°C	1.5	mW/°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Fall Time (Non-Saturated)

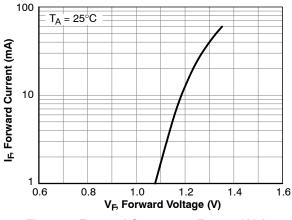
tf

Symbol	Parameter	Test Conditions	Device	Min	Тур	Max	Unit
NDIVIDUA	L COMPONENT CHARACTERISTICS						
mitter							
VF	Forward Voltage	I _F = 10 mA	All	1.0	-	1.3	V
I _R	Reverse Current	V _R = 5 V	All	-	-	5	μA
Detector							
BV _{CEO}	Breakdown Voltage Collector to Emitter	I _C = 0.5 mA, I _F = 0	All	80	-	-	V
BV _{ECO}	Emitter to Collector	I _E = 100 μA, I _F = 0	All	7	-	-	
I _{CEO}	Collector Dark Current	V _{CE} = 80 V, I _F = 0	All	-	-	100	nA
C _{CE}	Capacitance	V _{CE} = 0 V, f = 1 MHz	All	_	10	-	pF
RANSFE	R CHARACTERISTICS	• •					
CTR	DC Current Transfer Ratio	I _F = 5 mA, V _{CE} = 5 V	HMHA281	50	-	600	%
			HMHA2801	80	-	600	
			HMHA2801A	80	-	160	
			HMHA2801B	50	-	150	
		I _F = 1 mA, V _{CE} = 5 V	HMHA2801C	50	-	100	
V _{CE (SAT)}	Saturation Voltage	I _F = 8 mA, I _C = 2.4 mA	HMHA281	-	-	0.4	V
		I _F = 10 mA, I _C = 2 mA	HMHA2801, HMHA2801A, HMHA2801B, HMHA2801C	-	-	0.3	
tr	Rise Time (Non-Saturated)	$I_{C} = 2 \text{ mA}, V_{CE} = 5 \text{ V}, \text{ R}_{I} = 100 \Omega$	All	_	3	_	μs

ISOLATION CHARACTERISTICS V_{ISO} Steady State Isolation Voltage 1 Minute All 3750 _ _

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 I_C = 2 mA, V_{CE} = 5 V, R_L = 100 Ω


All

3

VAC_{RMS}

_

TYPICAL PERFORMANCE CHARACTERISTICS

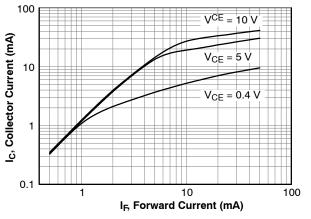


Figure 1. Forward Current vs. Forward Voltage

Figure 2. Collector Current vs. Forward Current

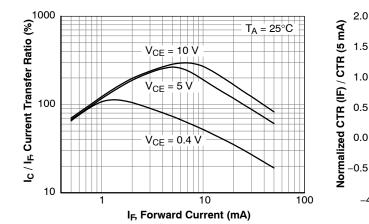


Figure 3. Current Transfer Ratio vs. Forward Current

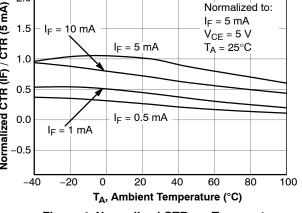
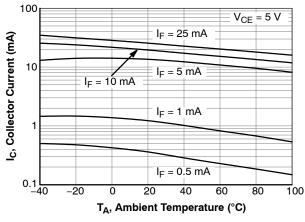
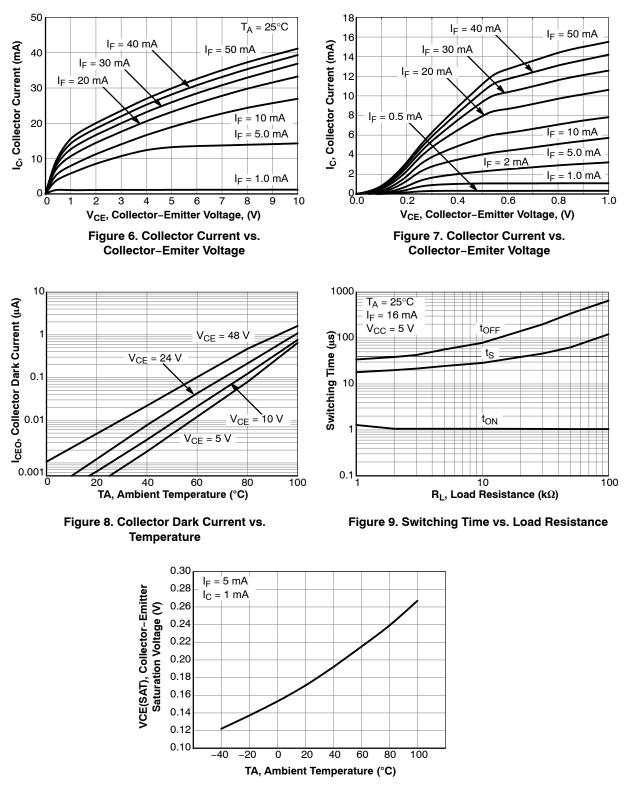
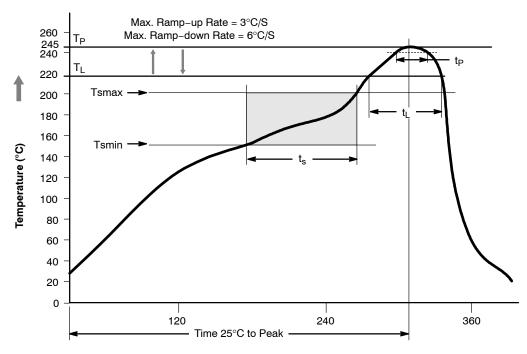


Figure 4. Normalized CTR vs. Temperature


Figure 5. Collector Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

REFLOW PROFILE

Figure 11. Reflow Profile

*For applications requiring 260C peak reflow performance, please order FODM217 series.

Profile Freature	Pb-Free Assembly Profile
Temperature Minimum (Tsmin)	150°C
Temperature Maximum (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60 – 120 seconds
Ramp-up Rate (t _L to t _P)	3°C / second maximum
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	245°C +0°C / –5°C
Time (t _P) within 5°C of 245°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C / second maximum
Time 25°C to Peak Temperature	8 minutes maximum

ORDERING INFORMATION

Part Number	Package	Shipping [†]
HMHA2801	Half Pitch Mini-Flat 4-Pin	150 Units / Tube
HMHA2801R2	Half Pitch Mini-Flat 4-Pin	2500 / Tape & Reel
HMHA2801V	Half Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	150 Units / Tube
HMHA2801R2V	Half Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi

MFP4 2.5X4.4, 1.27P CASE 100AL **ISSUE O** DATE 31 AUG 2016 0.3-0.51 2 PIN ONE 0.61 52 6.30-7.29 4.40 (Typ) ¢ 83 87 4 4 3 0.55-0.75 2.31 - 2.691.27 2.39 (Max) LAND PATTERN RECOMMENDATION 1.95-2.11 0-0.20 R0.15 (Typ) 2\: R0.15 (Typ) 1.27+/- .127 0.30-0.89 0.18 - 0.251.19 (Typ) NOTES: A) NO STANDARD APPLIES TO THIS PACKAGE B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13485G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	MFP4 2.5X4.4, 1.27P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

HMHA281V HMHA2801CR2V HMHA2801CR2 HMHA2801B HMHA2801BR2